S Powersoft

Jpen Tools from Sybase, Inc.

YowerBuilder
»++ Class Builder
/ersion 6

Power
Builder

ABO0878
October 1997

Copyright © 1991-1997 Sybase, Inc. and its subsidiaries.
All rights reserved.
Printed in Ireland.

Information in this manual may change without notice and does not represent
a commitment on the part of Sybase, Inc. and its subsidiaries.

The software described in this manual is provided by Powersoft Corporation
under a Powersoft License agreement. The software may be used only in
accordance with the terms of the agreement.

No part of this publication may be reproduced, transmitted, or translated in
any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of Sybase, Inc. and its
subsidiaries.

Sybase, Inc. and its subsidiaries claim copyright in this program and
documentation as an unpublished work, revisions of which were first
licensed on the date indicated in the foregoing notice. Claim of copyright
does not imply waiver of other rights of Sybase, Inc. and its subsidiaries.

ClearConnect, ComponentPack, InfoMaker, PowerBuilder, Powersoft,
S-Designor, SQL SMART, and Sybase are registered trademarks of Sybase,
Inc. and its subsidiaries. Adaptive Component Architecture, Adaptive
Warehouse, AppModeler, Column Design, DataArchitect, DataExpress, Data
Pipeline, DataWindow, dbQueue, ImpactNow, InstaHelp, Jaguar CTS,
jConnect for JDBC, MetaWorks, NetImpact, ObjectCycle, Optima++,
Power++, PowerAMC, PowerBuilder Foundation Class Library,
PowerDesigner, Power J, PowerScript, PowerSite, Powersoft Portfolio,
Powersoft Professional, PowerTips, ProcessAnalyst, Runtime Kit for
Unicode, SQL Anywhere, The Model For Client/Server Solutions, The
Future Is Wide Open, Translation Toolkit, UNIBOM, Unilib, Uninull,
Unisep, Unistring, Viewer, WarehouseArchitect, Watcom, Watcom SQL
Server, Web.PB, and Web.SQL are trademarks of Sybase, Inc. or its
subsidiaries. Certified PowerBuilder Developer and CPD are service marks
of Sybase, Inc. or its subsidiaries. DataWindow is a patented proprietary
technology of Sybase, Inc. or its subsidiaries.

AccuFonts is a trademark of AccuWare Business Solutions Ltd.

All other trademarks are the property of their respective owners.

Contents

About This Book

... v
INtrodUctioncccccieeitee e 1
Introducing the C++ Class BuUilderccccuveeevieeieeceeiiieieeeeeee 2
What is @ DLL? ... 3
AQVANTAGES ... 3

Using DLLs with PowerBuilderccccceveieieierccrieceiee e 4

DLL COMPONENTS ...t 5
Required fUNCHIONScoccuiieecciiiecceee e 5
Programmer-supplied functionsc.ccccouveeeevveeeeiieseiieeeees 6
MeMOry MOAEIS........coiiiiiiie e 7
(07aTo [N 11 oTe L1 SRRSO 7

Data MOdelSccoecuieiiiiieiie e 7

IN Class BUIIErcooviiiiiiiieie e 8
Creating the C++ Source Codecccvcmrrecerrrssmrssersrscsensesesnnsesns 9
Creating C++ SOUICE COUEuereuieriieciie ettt 10
Step 1: creating the user object.........ccccceeeieeecieeccviecceeeeee, 10

Step 2: creating PowerBuilder functions for the user object.... 12

Step 3: declaring variablesccccceeevvieeieiieceeecee e 14

Step 4: converting from PowerBuilder to C++ source code 16

Step 5: troubleshooting the conversion..........cccccccvvveevunennne.. 17

AbOUL the C+ fileS.....ciieiiiii e 18
Caution on modifying code..........ccecervurrreieseeceeceee e 19

C/C++ programming NOESccueeeveereeereeireere et eeree e see e 20
INNEMANCE........coiiiie e 20
Function overloadingccoevieeiiieiie e 21
Reserved WOrdscccvviiiieciieieeceeeeeee et 21

How PowerBuilder builds C++ user object names 23
Equivalent PowerBuilder and C++ data types...........ccecu....... 23
Compiling and Linking the C++ Class..........cccccurrvemrnrcnennissnneenns 25
IDE OVEIVIEBWeeiiitiiiie ettt ettt e et e e ee e et ee e s s eneeeeeens 26

Contents

QI 1 (=3 =T 1 (o SRR 26

The Make ULIIY «..cooveeeeieieee et 26

The debUGger.......ccoi i 27

USING the IDE ... 28

Editing your C++ source code..........cccoeecmeecinneennineensncennennns 29

Compiling and linking the DLL...........ccccoviiiiiinieiiieeeeeen, 32

The Watcom debugger.......cooai it 38

Features of the Watcom debugger...........c.ccoeviiiiiniiicinnnninns 38

(D=1 10T To [T 41

4 Sample Program: Forecast.......cccoomrriiiinninnisnsnemms s 45
About the Forecast application...........ccccooeiiiiiiiiiiiiiiinieeeeee 46

Forecast application class hierarchyccccoovviiiiiiniiiinns 47

CODbASE SOUICE COUEeeeiieiiiiieiieeeeeee e e e e e e e e e e e e e ee s 49

CODASE.CPP oo ettt 49

CODASE. NPP .. 56

foloTo] ot 1T Yo7 o] o SN RUROPRR 59

How to run the Forecast programccccceeriiiiiniiinnicciiiinienns 62

A Conversion Error MeSSages......c.cccccuiveciisiremmreenmmmsnsnensnsnsnsinssens 65
ErTOr MESSAQES ... veirerueiereiie e ettee et e e e enee e 66

B The C4++ Source Codeccccemmmermrmmrmmnmimmmssssssssssesnnsnnssssenss s msanensnns 69
B To T e[(=TS0 e o] TR 70

CUO_GIBY.CPP. . uueeriiriiinirie sttt ie e e sbarn e e e e s e e ee e e s e e e eaas 72

(o T o[=1} (8 o] o] o SRR 74

POAIL N e 75

[g F= 11 4 Tt o] o F RN 76

[0V =Y o PP PP ROPRRN 77

WEP .ottt ettt sttt e e ae s s 79

About This Book

Subject

Audience

Software required

This book describes how to use the PowerBuilder C++ Class Builder to
quickly and easily develop C++ classes for use with PowerBuilder. With
the Class Builder you create PowerBuilder user objects in the C++
language, compile them with the Watcom C++ compiler Version 11.0,
and link them into compact and efficient Windows DLLs.

This book is for programmers who want to create their own compiled
functions using C++ and then make them available to PowerBuilder
applications. It assumes you are:

¢ An experienced PowerBuilder developer
¢ An experienced C or C++ programmer

¢ Familiar with Windows programming concepts, particularly DLLs
and the Windows API

The C++ Class Builder is available in the User Object painter of the
PowerBuilder Enterprise Edition, beginning with Version 4.0. (C++ user
objects created with the Class Builder are not compatible with earlier
versions of PowerBuilder.)

CHAPTER 1 Introduction

About this chapter This chapter introduces the PowerBuilder C++ Class Builder and the
Watcom Integrated Development Environment (IDE).

The chapter also discusses the usage and construction of Windows
dynamic link libraries (DLLs).

Contents

Topic Page
Introducing the C++ Class Builder 2
What is a DLL? 3
DLL components 5
Memory models 7

Introducing the C++ Class Builder

Introducing the C++ Class Builder

What the Class
Builder includes

What the Class
Builder does

The C++ Class Builder is a revolutionary set of enabling tools that dramatically
simplifies the process of compiling PowerScript user object functions into a
Windows DLL. With the C++ Class Builder, you create user object functions
and variable definitions within PowerBuilder, generate the corresponding C++
classes and skeleton code, then write the actual function logic in C++. This
strategy enables you to take full advantage of PowerBuilder's object-oriented
capabilities and the power and efficiency of the C++ language.

The C++ Class Builder contains everything you need to create and debug a
complete Windows DLL, including:

¢ The Watcom Integrated Development Environment (IDE), which acts
as a workplace shell for your C++ coding and debugging activities

¢ A powerful source code editor that takes advantage of the Windows
Graphical User Interface (GUI)

¢ The Watcom C/C++ optimizing compiler Version 11.0 for Windows
DLLs

¢ A flexible, user-configurable object code linker
¢ A versatile, easy-to-use source code debugger

¢ The PowerBuilder C++ Interface Generator that creates skeleton C++
source code from your PowerScript user object functions

The C++ Class Builder automates much of the C++ coding normally associated
with a Windows DLL. This includes function prototypes and function and class
declarations, as well as initialization and exit routines. This frees you to
concentrate on the logic of your functions rather than the mechanics of
constructing the DLL.

Chapter 1 Introduction

What is a DLL?

Advantages

A dynamic link library (DLL), like a static code library, is a collection of
functions.

When an application uses functions from a static library, the library functions
referenced by the application become part of the executable module. This form
of linking is called static linking.

When an application uses functions from a dynamic link library, the library
functions referenced by the application are not included in the executable
module. Instead, the executable module contains references to these functions
that are resolved at execution time. This form of linking is called dynamic
linking.

These are some of the advantages of using dynamic link libraries over standard
libraries:

¢ Reduced time and disk space Functions in dynamic link libraries are
not linked into your program. Only references to the functions in
dynamic link libraries are placed in the program module (these
references are called import definitions). As a result, the linking time is
reduced and disk space is saved. If many applications reference the
same dynamic link library, the savings in disk space can be significant.

¢ Updating without relinking Since program modules only reference
dynamic link libraries and do not contain the actual executable code, a
dynamic link library can be updated without relinking your application.
When your application is executed, it will use the updated version of
the dynamic link library.

¢ Sharing code and data Dynamic link libraries also allow sharing of
code and data between the applications that use them. If many
applications that use the same dynamic link library are executing
concurrently, the sharing of code and data segments improves memory
utilization.

What is a DLL?

Using DLLs with PowerBuilder

Advantages

A Windows DLL is a library of related functions that can be called from a
PowerBuilder application. Because the DLL is separate from the PowerBuilder
application that calls it, many such programs can share the same function code
without each of them having to include that code in its executable.

Separate maintenance The DLL functions can be maintained
separately from the compiled PowerBuilder applications that use them.
Programs that rely heavily on DLLs for their functionality are cheaper
to maintain, since changes to a particular function can be made in the
DLL and distributed more economically than recompiling and
redistributing the whole application.

Extended functionality The functionality of programs can be
extended and enhanced through the use of carefully designed DLLs.
While PowerBuilder offers a rich palette of functions, you may want to
call additional Windows API functions. By packaging the necessary
API calls in a DLL, along with code to allocate and manipulate
Windows resources, you can make powerful, encapsulated functions
available to any PowerBuilder application.

Improved performance The PowerScript language is fast and
powerful enough for most Windows applications, but for programs that
are calculation-intensive (real-time graphics display, matrix
manipulation, and so on), compiled C++ may be a better choice of
language. Functions written in C++ can be made into a DLL and called
from your PowerBuilder application.

Chapter 1 Introduction

DLL components

DLLs created for Windows Version 3.0 consist of three required functions:
Entry, Main, and Exit. Those created for Windows Version 3.1 and Windows
95 require only Entry and Main; Windows NT requires only DLLLMain; the
Exit procedure is optional but is almost always included. Watcom C/C++
provides a DLL Entry function (called LibEntry) and an exit procedure (called
WEDP) in its linker libraries. PowerBuilder provides LibMain as C++ source
code when you build a C++ user object.

A DLL will also contain programmer-supplied functions, to do the actual
work for which you’ve built the DLL.

Required functions

LibMain

WEP

The LibMain function performs initialization specific to a particular DLL, and
is linked into your DLL automatically by the Make utility.

Since LibMain is only called once each time the DLL is loaded, it cannot
perform functions in support of individual instances that use the DLL. The kind
of initialization commonly done in LibMain includes:

¢ Initializing data structures that will be managed by the DLL
¢ Loading bitmaps, icons, and other resources

¢ Registering for use by the calling application, such as window classes
that may be used to implement custom controls

WEP (Windows Exit Procedure) is the last function of a DLL that executes
before Windows unloads the DLL from memory. If any resources are allocated
to the DLL in the LibEntry or LibMain functions, they should be deallocated
in the WEP.

DLL components

Programmer-supplied functions

Exported functions

Internal functions

This is where you put the real functionality of the DLL. Some of these
functions will have entry points that are available to a calling application or
another DLL; these are known as exported functions. Others will have entry
points that can only be called from functions within the same DLL; these are
known as internal functions.

You should not have to deal directly with exported functions, since
PowerBuilder shields you from the complexities of the DLL internals.
However, for the sake of completeness, here is a brief explanation.

Exported functions are the handles by which the rest of the world gets at the
functionality of your DLL. Aiso known as entry points, exported functions can
be called from a PowerBuilder application. Exported functions generally offer
high-level services to the applications and DLLs that call them. They do this
by calling internal functions that perform the operations required to support

those services.

Exported functions for use by PowerBuilder must be declared as __far and
must use the __ PASCAL calling convention. This avoids passing parameters
in the CPU registers. The registers are used by the prolog code of an exported
function, and passed parameters would be overwritten. The __far and
__PASCAL conventions are ensured by including the file pbdll.h in your
source code. PowerBuilder does this for you when it builds the C++ skeleton
file from your user object. The file pbdll.h contains a macro definition for
PB_EXPORT, which is added to your exported function declarations.

Internal functions are the workhorses of a DLL. They are called to perform
operations needed by other DLL functions—operations such as initialization
and cleanup in LibMain and WEP, and function logic that you code.

Because internal functions are not known to the outside world (their entry
points are not exported), they can only be called by other functions within the
same DLL. They cannot be called from PowerBuilder. Much like subroutines
in an application program, internal functions support the processing done by
the program’s main routines.

Finally, as in application programming, the use of internal functions simplifies
and modularizes the coding of a DLL.

Chapter 1 Introduction

Memory models

Code models

Data models

Memory models limit the size of your program and data by describing the
number of bytes used to address data and call functions in your program. The
memory model is comprised of a code model and a data model.

There are two code models:

L4

Small code model In this model all calls to functions are made with
near calls. Hence, in a small code model, all code comprising your
program, including library functions, must be less than 64K.

Big code model In this model all calls to functions are made with far

calls. This model allows the size of the code comprising your program
to exceed 64K.

There are three data models:

¢

Small data model In this model all references to data are made with
near pointers. Hence, in a small data model, all data comprising your
program must be less than 64K.

Big data model In this model all references to data are made with far
pointers. This removes the 64K limitation on data size imposed by the
small data model. When a far pointer is incremented, only the offset is
adjusted. Watcom C/C++ assumes that the offset portion of a far
pointer will not be incremented beyond 64K. The compiler will assign
an object to a new segment if the grouping of data in a segment will
cause the object to cross a segment boundary. Implicit in this is the
requirement that no individual object exceed 64K bytes. For example,
an array containing 40,000 integers does not fit into the big data model.
An object such as this should be described as huge.

Memory models

¢ Huge data model In this model all references to data are made with
far pointers, as in the big data model. However, in the huge data
model, incrementing a far pointer will adjust the offset and the segment
if necessary. The limit on the size of an object pointed to by a far
pointer imposed by the big data model is removed in the huge data
model.

In Class Builder
The PowerBuilder C++ Class Builder makes DLLs based on the large memory

model only:
Memory Code Data Default mode Default data
model model model pointer pointer
Tiny Small Small Near Near
Small Small Small Near Near
Medium Big Small Far Near
Compact Small Big Near Far
Large Big Big Far Far
Huge Big Huge Far Huge

CHAPTER 2

About this chapter

Contents

Creating the C++ Source Code

This chapter describes how to build a PowerBuilder C++ user object and
convert it into skeleton source code to be compiled.

The chapter includes discussions of instance versus shared variables and
access levels of public, private, and protected as used by PowerBuilder.

Topic Page
Creating C++ source code 10
About the C++ files 18
C/C++ programming notes 20

Creating C++ source code

Creating C++ source code

To create C++ source code you need to perform these basic steps:
Create the user object

Declare user object functions

Declare instance and shared variables

Convert from PowerBuilder to C++ source code

wm R W N =

Troubleshoot the conversion

Each of the steps is explained below.

Step 1: creating the user object

10

The code that handles event processing is placed in event scripts. Supporting
routines, business logic, and so on are usually put in functions and subroutines.
These functions may be associated with objects in PowerBuilder, such as
windows, menus, and user objects.

Many useful tasks can be handled by user objects, from performing complex
calculations and processing forms or dialog boxes to encapsulating business
rules. The Class Builder gives you the advantage of coding these functions as
fast, compact DLLs and still enables you to call these functions as if they
resided in a PowerBuilder user object.

For those familiar with C++ programming, the user object is analogous to a
C++ class. It consists of data members (declared as instance or shared
variables) and methods (functions) that operate on that data. In fact, the
definition of your user object, as specified in the User Object painter, goes on
to become the C++ class definition in your DLL source code. This definition
resides in the header file with the file extension hpp.

You create a C++ class from within PowerBuilder by first creating a special
type of class user object called a C++ user object. This serves as a repository
for the exported function and data declarations that will make up this particular
C++ class in your DLL.

Chapter 2 Creating the C++ Source Code

0,
0’0

The example

The example in the steps in this section begins building a very simple
application called Hello World. The work is done by two functions declared
in one user object. The functions are coded in C++ to create a DLL. We've
named the DLL hello.dll.

To create a new C++ user object:

1

In the User Object painter, select New and then double-click the C++
icon.

ew User Object '

The Select C++ DLL Name dialog box appears:

i Slect le Nam] [2]

C++ DLL Name[*.dll)

Specify a destination path and filename for the DLL you will create. If
you want, you can click Cancel at this point and name the target DLL
later, before entering the IDE.

In the Hello World program included on your distribution disk, the
C++ user object contains a fully qualified DLL name:

11

Creating C++ source code

string LibraryName="c:\Pwrs\Watcnt\samples\hello\
hello.dll*

This is the path specified in the Select C++ DLL Name dialog box and
where the application would try to find the Hello DLL. To simplify
your installation, we have changed the line specifying the DLL path to:

string LibraryName=".\hello.dll"

The program will find the DLL as long as it is in the current directory
or its directory is on the DOS path.

Notice that a new button is added to the User Object PainterBar. You
will use it to enter the IDE, where you will write the C++ code for your
user object.

Step 2: creating PowerBuilder functions for the user object

About functions

12

Once you have created a C++ user object, the next step is to define the user
object functions it should contain. The PowerBuilder C++ User Object painter
will use these definitions to build a skeleton DLL for you, containing one
function declaration for each user object function you define. In the DLL, these
are known as exported functions.

PowerBuilder is a powerful tool for creating visual frontends for a variety of
databases. With PowerBuilder you can design a graphical environment through
which users interact with the underlying program logic. Much of this logic does
not need to be directly accessible to the user, but must do the work under the
covers. Usually, for the sake of efficiency and modularity, it’s a good idea to
break up code into manageable sections, or functions.

In general, PowerBuilder processing is divided into two types: event scripts
and functions.

.

Event scripts These are triggered by the occurrence of a particular
Windows event, such as clicking a button, pressing a key, opening or
closing windows, editing the contents of a DataWindow, to name a
few. The code you write in scripts should be more or less limited to
handling those events. Additional processing that is not directly
concerned with the event itself (even though it may occur in response
to the event) should be placed in a function.

Functions These are further divided into two types, functions and
subroutines. The only difference to the programmer is that functions
return a value and subroutines do not.

Chapter 2 Creating the C++ Source Code

Naming conventions

You might want to adopt a naming convention to distinguish global functions
from object-level functions. Doing this makes it easier for you to identify
which are which, and which functions are meant to be compiled as DLLs.

Here is one suggestion:

Type of function Name prefix
Global f

Window level wi_

Menu level mf_

User object level uf

C++ user object level cf_
Application object level af_

% To create the functions that will be exported to the new C++ class:

1

Select Declare>User Object Function from the menu bar.
or

Click the right mouse button and select User Object Functions from the
popup menu.

The Select Function In User Object window appears.
Select New.
The New Function dialog box appears:

New Function

Enter the function definitions listed below. Enter the function names
carefully; once you have saved a function definition, the only way it
can be renamed is by deleting and redefining it.

13

Creating C++ source code

Return Parameter
Function name type type Parameter name
cf_save_message none string input_message
cf_display_message none none none

Notice that when you click OK after entering the definition for each
function, PowerBuilder returns you to the User Object painter. This is
unlike the definition for a non-C++ user object, where you would go to
the User Object Function painter.

C++ user objects

You don’t write program logic for a C++ user object function within
PowerBuilder—you only declare the function and its data. You will
code the logic for this function later, within the Watcom IDE.

Step 3: declaring variables

Shared variables

14

Like functions and their parameters, all data members of a C++ class must be
explicitly declared before the class can be instantiated. In order to have
PowerBuilder create the data member declarations for you in C++, you must
first declare them in the User Object painter.

If you want the value of a data member to be shared among all instances of its
class, declare it as shared. A shared variable will have the same value to all
scripts within all instances of the class.

Shared variables always have private access. This means they can only be
accessed by objects of exactly the same class as that in which they are defined.

For example, say you have a window called w_main in which you define a
shared integer variable called mainvar:

// In window w_winl of type w_main...
shared:

integer mainvar

mainvar = 20

Only instances of the window type w_main can access it:

// In window w_win2 of type w_other...
integer what
what = mainvar

Chapter 2 Creating the C++ Source Code

Instance variables

R
»

// The value of 'what' is undefined because the
// value of mainvar is only known to windows of the
// w_main class.

and they will all see the same variable:

// In window w_win3 of type w_main...
integer what
what = mainvar
// the value of 'what' is 20, as assigned in w_winl.
If the value of mainvar is changed in one instance of w_main, all other
instances will see the changed value. Shared variables are also static. That
means the value of a shared variable is maintained even when all instances of
its parent object are closed. In the above example, if an instance of class
w_main set mainvar = 20, and then all instances of w_main were closed, the
next time w_main was instantiated, mainvar would still be 20.

If you want each instance of the class to keep its own copy of a data member,
each with potentially different values, you should declare it as an instance
variable.

Instance variables declared in the user object as private or protected will reside
in the data space of the C++ executable. They can be referenced directly by the
C++ program, but not by any PowerBuilder scripts or functions. Private data
members are known only to the C++ class in which they are defined. Protected
data members can be referenced within the class in which they are defined, as
well as any classes inherited from it.

To declare the data member for the Hello World example:

1 In the User Object painter, select Declare>Instance Variables from the
menu bar.
or

Right-click and select Instance variables from the popup menu.

The C++ Instance Variables dialog box appears.

15

Creating C++ source code

2

~ W

W

6

Enter the following data declaration:

| C++ Instance Variables

Click OK.

Click OK to save.

You have now entered all the information necessary to produce a skeleton C++
source file from the uo_greeting user object.

Step 4: converting from PowerBuilder to C++ source code

16

"
°o*

The process of converting your PowerBuilder C++ user object to C++ source
code is as simple as pushing a button. When you invoke the IDE, PowerBuilder
recreates the user object you have just defined, adding external function calls
that will speak to the functions in your DLL. In addition, PowerBuilder
generates four files of C++ skeleton source code. You will edit this code to add
the logic for your exported DLL functions.

To create the C++ skeleton files from your C++ user object:

1
2

Start PowerBuilder with the Hello World application active.
In the User Object painter, select uo_greeting if it is not already active.
Do one of the following to start the IDE:

Click the IDE button on the User Object PainterBar.

or

Select Design>Invoke C++ Editor from the menu bar.

or

Right-click anywhere in the User Object painter and select Invoke C++
Editor from the popup menu.

Chapter 2 Creating the C++ Source Code

Tip
Most menu items on the Design and Declare menus are available by
right-clicking in the User Object painter.

Once you are in the IDE, your screen should look like this:

Step 5: troubleshooting the conversion

On the rare occasion that the conversion from user object to C++ source code
may fail, you will receive an error message. Such a failure is usually caused by
modifying the C++ class outside PowerBuilder, changing code inside the cover

function file, changing code between the \\$PB comment lines in the skeleton
files, and so on.

FOR INFO For a list of error messages and explanations, see Appendix A,
"Conversion Error Messages".

17

About the C++ files

About the C++ files

When you build a C++ user object, PowerBuilder creates four source files for
you. The examples in this chapter build a user object called uo_greeting and
turn it into an executable called hello.dll. The corresponding files created by
PowerBuilder are listed below:

Source filename Description

uo_gre6Y.cpp Contains the user object function declarations. This is
the skeleton source code of your C++ user object
functions

This is the file you modify by adding your own function
code

cuo_gr6Y.cpp Contains cover function declarations that are called
from the PowerBuilder user object and that correspond
to the two user object functions cf_save_message and
cf_display_message. PowerBuilder cannot directly call
the C++ class functions you create in an external DLL.
The functions in cuo_gr6Y.cpp act as a buffer between
the user object and the DLL

This is a utility file used by PowerBuilder and should
not be modified

uo_gre6Y.hpp Contains the instance variable declarations from the
user object, as well as prototypes for each of its
functions. This is the skeleton source code of your C++
user object variable declarations. It also includes the
function prototypes (forward declarations) required by
C++. This file is #INCLUDEd in uo_gre6Y.cpp when it
is compiled, making these declarations available to your
C++ code

You may modify this file if you need to add internal
Sfunctions or data declarations to your DLL

Imain.cpp Contains the LibMain and WEP functions that are
compiled into every C++ user object. It is created by
the PowerBuilder C++ interface generator and consists
of simple source code for LibMain and WEP

You would not normally change this file

These files are compiled and linked under the control of the Make utility in the
IDE. The result is a Windows DLL that can be called from a PowerBuilder
application.

FOR INFO For the complete C++ source code files, see Appendix B, "The
C++ Source Code".

18

Chapter 2 Creating the C++ Source Code

Caution on modifying code

The C++ class definition (uo_gre6Y.hpp in our example) and skeleton file
(uo_gre6Y.cpp) must be modified carefully. Any changes made on or between
the two lines starting with //PB could corrupt these files and cause the code
generation process to fail. If you return to PowerBuilder to make changes to
your user object and enter the IDE again, all code enclosed within the //PB
comments gets regenerated, destroying any changes you have made.

Any function code added to the C++ skeleton outside the /PB comments
will be maintained, even if the user object is changed in PowerBuilder and
resaved. This allows changes to your user object without losing the C++ code
you’ve already written.

The C++ cover function file, cuo_gr6Y .cpp, should not be changed. It contains
interface code only, and no user-serviceable parts. It is regenerated every time
you save the PowerBuilder user object, so any changes you make here will be
destroyed. Changes made here can cause unpredictable errors when you
attempt to call the user object DLL from PowerBuilder.

19

C/C++ programming notes

C/C++ programming notes

Inheritance

How inheritance
works

20

This section deals with issues of compatibility between the C++ language and
PowerScript. The topics covered include object-oriented principles such as
inheritance and function overloading, as well as specific information about
reserved words, naming conventions, and data type equivalency.

In PowerBuilder, objects such as windows, menus, and user objects can all be
inherited. Likewise in C++, any class you define can use inheritance.
Furthermore, the attributes of a C++ class can be inherited from several
ancestors through a technique called multiple inheritance.

Multiple inheritance
Unless you exercise extreme care in your design, this technique can quickly
add complexity and confusion to your program.

PowerBuilder imposes a limit of one direct ancestor per descendant, or single
inheritance. This limit applies to C++ classes created from user objects.

The C++ Class Builder implements class inheritance in two steps:

1 You create an inherited C++ user object. This is done by clicking the
Inherit button in the New User Object dialog box and choosing an
existing C++ user object to inherit from. You proceed as usual to
populate this user object with function and data member definitions.

2 When PowerBuilder generates the skeleton C++ files for the inherited
user object, it creates a class that is based on the ancestor class and
#INCLUDE:s the header file (hpp) for that ancestor within the new
class. In this way, all functions and data members with access level of
public or protected are now available to the descendent class.

Tip
All members of a particular class hierarchy (that is, all classes that are
descended from a particular ancestor) must reside in the same DLL.

Chapter 2 Creating the C++ Source Code

Function overloading

Example

Reserved words

This is an object-oriented programming technique that enables you to call
many functions by the same name. The function that will be executed depends
on the object calling it and the type of data you are passing to it.

Function prototype Description

void print (char * my_string) Calls a print function dedicated to printing
strings (arrays of type char)

void print (double pay_info) Calls a function that prints formatted
decimal numbers

bool print (ref struct_def my_struct) | Calls another print function that takes a
pointer to a structure as input and returns
a boolean flag

You can overload function names in PowerBuilder, however, there is no way
for PowerBuilder to create overloaded names in the DLL. If you were to create
such overloaded functions in the DLL source code yourself, PowerBuilder
would have no way to call them.

It is possible, however, to use function overloading within your DLL for
nonexported functions. In this case, you must define the functions manually,
either in the C++ skeleton file or in another source file that will be linked with
it. Since you do not declare nonexported functions in PowerBuilder anyway,
this should not pose a problem. But be aware: you should not overload function
names that are exported to PowerBuilder.

Of course, once you are in an internal function, all the power of Windows
DLLs is available to you. From here you can call any function in the Windows
API, other DLLs you have written, or routines in any one of thousands of
commercially available third-party DLLs and custom controls.

Avoid the following C/C++ keywords and symbols in the names of data
members and arguments to PowerBuilder functions. These names will be
copied into the DLL skeleton, and will likely confuse the compiler.

21

C/C++ programming notes

Standard C/C++ keywords and symbols

asm continue float new signed try

auto default for operator sizeof typedef
break delete friend private static union
case do goto protected struct unsigned
catch double if public switch virtual
char else inline register template void
class enum int return this volatile
const extern long short throw while

Additional WATCOM C/C++ keywords

based far huge near saveregs segname

cdecl farl6 interrupt Packed Segl6 self

export fortran loadds pascal segment syscall
Reserved symbols

! (/ >> *= &=

) ~ “ > <= /= A=

$ - [< + >= Yo= I=

Yo +] > - == +=

A = \ ? * 1= -= ##

& { ; , ->* && <<=

* } ‘ . << Il >>=

In addition, you may not use names beginning with the following combinations
of characters:

__ Double underscore
_C Underscore followed by any uppercase character

22

Chapter 2 Creating the C++ Source Code

How PowerBuilder builds C++ user object names

You may have noticed that the filenames of your C++ skeleton source code
look a little strange. With respect to filenames, the C++ interface generator
must do two things:

¢ Ensure that from each user object name it creates a unique, eight-
character DOS filename.

¢ Prefix the cover function file with the character c.

Here is how PowerBuilder names the cpp and hpp files it creates from your user
object. If the original user object name is six characters or shorter in length, it
is used, as is, for the C++ filenames. Otherwise, the C++ skeleton source
filename starts with the first six characters of the original user object name.
Characters seven and eight are an encryption of the user object name and are
appended to the first six characters. Finally, the extension cpp is added.

For example, the two-character encryption of uo_greeting is 6y. This is
appended to the first six characters to form the eight-character name
uo_gre6Y.cpp.

The name for the user object header file is derived in the same manner, except
that it gets an extension of hpp.

The C++ cover function file starts with the letter ¢ followed by the first five
characters from the original user object name. If the original name is more than
five characters long, the last two characters are an encryption of the entire
original name, as above. The extension cpp is added. For example, uo_greeting
becomes cuo_gr6Y .cpp.

More about naming conventions

While it is wise to prefix user object names with uo or uo_ to make them
easy to spot, these characters take up valuable real estate in the DOS
filename. Use them where you can, but recognize they add no meaning
when trying to identify a particular user object.

Equivalent PowerBuilder and C++ data types

PowerBuilder
C++ type type Description
BOOL ‘ BOOLEAN 2-byte signed integer

23

C/C++ programming notes

PowerBuilder

C++ type type Description

WORD UINT 2-byte unsigned integer

DWORD ULONG 4-byte unsigned integer

HANDLE UINT 2-byte unsigned integer

HWND UINT 2-byte unsigned integer

LPINT STRING 4-byte FAR pointer

LPWORD STRING 4-byte FAR pointer

LPLONG STRING 4-byte FAR pointer

LPDWORD STRING 4-byte FAR pointer

LPVOID STRING 4-byte FAR pointer

LPVOID CHAR 4-byte HUGE pointer

BYTE CHAR 1-byte

CHAR CHAR 1-byte

CHAR [10] CHAR [10] array of 10-bytes

INT INT 2-byte signed integer

UNSIGNED INT UINT 2-byte unsigned integer

LONG LONG 4-byte signed integer

UNSIGNED LONG ULONG 4-byte unsigned integer

DOUBLE DOUBLE 8-byte double precision floating
point number

DOUBLE DECIMAL 8-byte double precision floating
point number

FLOAT REAL 4-byte single precision floating
point number

N/A TIME Date & time structure

N/A DATE Date & time structure

N/A DATETIME Date & time structure

24

CHAPTER 3

About this chapter

Contents

Compiling and Linking the C++

Class

This chapter describes the tools and techniques you use to produce a
finished DLL from your PowerBuilder C++ source code. The tools are
part of the Watcom IDE and include the editor, the Make utility, and the

debugger.
Topic Page
IDE overview 26
Using the IDE 28
The Watcom debugger 38

25

IDE overview

IDE overview

The IDE acts as a launching pad for the various tools used to create and test a
DLL. These include an editor, a compiler, a linker, and a debugger.

When you install the C++ Class Builder, a new button is added to the User
Object PainterBar. Clicking it opens the IDE.

IDE project

Everything you do in the IDE is done within a project. The project acts as a
logical container for all your source files, resource files, object files, Make
utility files, executables, and so on.

Executable entities such as DLLs that are built in the IDE are called targets
and together they make up a project. A project file is essentially a file list used
by the IDE to keep track of the source code in the current project. Project files
have the file extension of wpj. Target files are always of type DLL, and are
made from source code files with the extensions cpp and hpp.

The editor

The editor included in the C++ Class Builder is the Windows-based Watcom
Editor, Version 11.0. Most developers have their favorite C++ editor; but the
C++ Class Builder includes one just in case you don’t.

The editor is configured to fit into the Windows environment. It contains a
toolbar and menu items. It can use proportional fonts. It also contains drag and
drop toolbars or palettes where you make choices and then simply drag them
to the elements to which you want to apply them.

For detailed instructions on using the editor, see the editor’s online Help. Select
Actions>Edit Text from the IDE main menu. When the editor starts, select
Help.

e Make uti

|
=

N
S

y

The Make utility converts your source code into an executable DLL file. It does
this by first compiling your source code into object files using the Watcom
C/C++ 11.0 optimizing compiler. Next, one or more object files within your
project are linked to form an executable DLL, using the Watcom linker.

26

Chapter 3 Compiling and Linking the C++ Class

The debugger

The debugger is a powerful debugging tool that helps you analyze your

programs and find out why they are not behaving as you expect. It allows you
to single step through your code, set breakpoints based on complex conditions,
modify variables and memory, expand structures and classes, and much more.

FOR INFO For detailed instructions on using the debugger, see the
debugger’s online Help. To start the debugger, select Target>Debug from
the IDE main menu. When the debugger starts, select Help.

27

Using the IDE

Using the IDE

% To start the IDE from PowerBuilder:

¢ Click the IDE button in the User Object PainterBar.
or
Select Design>Invoke C++ Editor.
or
Right click anywhere in the User Object painter and select Invoke C++ Ed-
itor from the popup menu.

Here is a picture similar to what you should see when the IDE starts:

Toolbar buttons These are the available toolbar buttons:

Button Name What you do

Create project | Set up a new project file with no targets in it. When
beginning work on a new PowerBuilder DLL, you
can do this step yourself or have PowerBuilder
create a new project file for you

Open project | Opens a previously saved project so you can work
on the source code or re-make the target DLL

Save project Saves the current project. The source files defined
within a project must be saved separately, from the
editor

28

Chapter 3 Compiling and Linking the C++ Class

Button Name What you do

Edit When you open a project, all the source files
associated with it display in a listbox. To edit one
of them, select one and click this button. You can
also double-click on the filename within the target
window

Build the Compile and link a single source file

selected The result is an object (obj) file being created for

source that source, and a DLL being produced from that
object by the linker

Build the Make a PowerBuilder DLL

current target

If your target has more than one source, you click
here to compile and link all source files, and create
a DLL from them

Debugger

Start the Watcom character-mode debugger

This is not the PowerBuilder debugger, but a tool
for controlling execution of your compiled DLL.
To use it, you set breakpoints in your C++ source
code and run your PowerBuilder application. When
a DLL breakpoint is reached, execution is
transferred to the debugger, where you can single-
step or loop through the DLL as required

Build all
targets in the
current project

Allows you to write source code for more DLLs,
compile them all in one step, and link them into
their respective executables. This is useful if, for
example, several DLLs share the same source code
modules or header files

Exit

Returns you from the IDE to PowerBuilder

Editing your C++ source code

When you enter the IDE from PowerBuilder, you see an open project listing
the C++ source files corresponding to your PowerBuilder user objects.

This example
These steps edit the source files for the Hello World example.

29

Using the IDE

30

07
0.0

To edit the source files:

1

Select the C++ skeleton file (uo_gre6Y.cpp) and click the Edit button.
or

Double-click the filenaime.

The skeleton of your C++ source code displays in the editor window.
In the function cf_save_message, move to the space labeled:

/ *

* Put your code here

*/

Type:
stored_message = input_message;

This transfers the message string into the instance variable you
declared earlier, where the function cf_display_message can find it and
display it.

In the function cf_display_message go to the space labeled:
/ *

* Put your code here

*/

Type this as a single line:

MessageBox (NULL, stored_message, "C++ User Object
Message", MB_OK);

This entry point uses the Windows MessageBox function to display the
contents of the instance variable, stored_message, in a modal window.

The completed uo_gre6Y.cpp source code should look like this (the
lines you have added in this tutorial are in bold).

/* Watcom Interface Generator Version 1.0 */

/* This file contains code generated by PowerBuilder.
* Do not modify code delimited by comments of the
form:

* // PB -- begin generated code for object <>. Do
not modify this code

* // PB -- end generated code for object <>.

* This file contains the bodies the functions for
your user object.

*/

Chapter 3 Compiling and Linking the C++ Class

#include <pbdll.h>
#include "uo_gre6Y.hpp"

// PBS -- begin generated code for object
//<uo_greeting>. Do not modify this code
#if 1

void uo_greeting::cf_display_message() {
// PBS -- end generated code for object
//<uo_greetings>.

stored_message = input_message;
}

#endif // PowerBuilder code, do not remove

// PBS -- begin generated code for object
//<uo_greeting>. Do not modify this code
#if 1

void uo_greeting::cf_save_message() {

// PB -- end generated code for object
//<uo_greetings>.

MessageBox (NULL, stored_message, "C++ User Object
Message", MB_OK) ;
}

#endif // PowerBuilder code, do not remove

6 Select File>Save to save your work.

Double-click the editor control box.
or

Select File>Exit to quit the Editor.

8 Choose Yes when prompted to save the changes you have just made.

The MessageBox The first DLL entry point makes a call to the Windows API MessageBox

function function. This is a very useful function that places a complete dialog box, with
a custom message and limited button response, on the window you choose.
Here is the basic syntax of the MessageBox function call:

MessageBox (parent window, message, titlebar text, buttons)

31

Using the IDE

where:

*

parent window In our example, the current window is the parent, so
we can set the first parm to NULL. Notice this is entered in uppercase.
This is required, because it must match exactly the definition of the
word NULL in the file WINDOWS.H. This header file is #INCLUDEd
at the top of this source file, and contains definitions of many constants
and function prototypes for Windows API calls, including the
MessageBox call.

message Stored_message is the name of the string variable that holds
the message you want to display.

titlebar text The quoted string C++ User Object Message is any
string you want to appear in the title bar of the message box.

buttons MB_OK is another constant from WINDOWS.H, and causes
a single button labeled OK to appear in the message box, below your
message.

Compiling and linking the DLL

Application object

32

In this example, we will use the Make utility to compile and link the Hello
World applet.

On your distribution disk is a PowerBuilder application called Hello. It consists
of hello.pbl, a PowerBuilder library containing:

¢
*

¢

An application object called hello
w_main, a window with:

¢ A button

¢ A single line edit control

A user object called uo_greeting that displays text in a Windows
message box

What follows is an abridged version of the exported code for the application,

window, and user object.

Open script

on open;
/* Open a main window */

Chapter 3 Compiling and Linking the C++ Class

Open (w_main)
end on

w_main

Variable declarations

shared variables
uo_greeting my_greeting

end variables

Open script
on open;
/* Instantiate the PowerBuilder user object */
/* my_greeting is declared as a SHARED VARIABLE */

my_greeting = CREATE uo_greeting

/**/
/* Two DLL functions are called from the CLICKED */
/* event of cb_OK: */
/* cf_save_message fetches the contents of */
/* sle_input on w_main and cf_display_message */
/* displays it in a Windows message box. */
/********************~k*****************************/
end on

Close script
on close;
/* Destroy the user object instance */

DESTROY my_greeting
end on
Button cb_1
Clicked script

on clicked;
/* Get greeting string from w_main.sle_1; */
/* call DLL function to store it */
my_greeting.cf_save_message (
w_main.sle_input. text)

33

Using the IDE

uo_greeting

34

/* Call another function in the DLL to */
/* display the message */
my_greeting.cf_display_message ()

end on

$PBExportHeader$uo_greeting.sru
global type uo_greeting from cplusplus
end type

DLL name

global type uo_greeting from cplusplus
string LibraryName=".\hello.dll"
end type
global uo_greeting uo_greeting /* instantiate it */

Instance variable definition

type variables
private string stored_message
end variables

Function definitions

forward prototypes
public subroutine cf_display_message ()
public subroutine cf_save_message (string
input_message)
end prototypes

DLL Name

Notice the string variable LibraryName declared at the label DLL name
above. It is initialized to the value ".\hello.dll"—the name you supplied in
the DLL Name dialog box earlier. The characters ".\" indicate that the DLL
should be found in the current directory, the one containing the
PowerBuilder PBL. If you move the DLL out of this directory, the functions
in uo_greeting may not be able to find it.

Chapter 3 Compiling and Linking the C++ Class

.

*+ To set the value of LibraryName to the directory where the DLL resides:
1 Export the user object to an sru file.
2 Change the value of LibraryName to the new pathname.

3 Save the sru file and import it using the Library painter.

% To see the complete generated code for each of the PowerBuilder
objects described above:

1 Open the Library painter.

2 Select the object you want to export.

3 Click the Export button on the PainterBar.
4

Use the PowerBuilder File Editor or another text editor such as DOS
Edit or Windows Notepad to browse the resulting file.

The application object, window, and user object will be found in files with the
extensions sra, srw, and sru respectively.

You are now ready to compile and link the Hello World application.

This example uses the Make utility
The steps in this example use the Make utility to compile and link the Hello
World applet.

35

Using the IDE

R

% To use the Make utility to compile and link the application:
1 From the IDE toolbar, select the Make Current Target button.

The Make utility will use a preset script to control the compiler and
linker to produce a Windows DLL from your code.

The IDE opens a log window while the Make utility runs, so you can
see the compiler and linker directives that are being followed. When
you see the message Execution complete, the Make utility has
completed successfully.

\pb60\hello\

Many of the compiler and linker directives you see here can be altered

from the IDE menu bar. For now, you will get the applet compiled and
linked so you can see how it works. Later you will learn about a switch
you can set that affects the amount of debugging information available.

You will now have a file called hello.dll in the directory you specified
when you created your C++ user object.

2 Click the Exit button to return to PowerBuilder.

The IDE project does not close.

36

Chapter 3 Compiling and Linking the C++ Class

3

Run the PowerBuilder application.

You should see a window with a single line edit and a button, and a
prompt for you to enter a short message.

"O \;P'nﬂ Mésgégne -

e

your essage here)

When you do, click OK.

The clicked script for the button calls the two functions you have just
coded in the DLL—the first to store the message you entered and the
second to display it in a message box. Here is what you will see:

While this a very simple example, it shows you just how easy it is to build a
DLL from a PowerBuilder user object.

37

The Watcom debugger

The Watcom debugger

So far, you have done the following:

1 Created your PowerBuilder user object, including user object functions
and variable declarations.

2 Clicked the Watcom DLL button on the User Object PainterBar. This
created skeleton C++ source code and invoked the IDE, ready for you
to edit your user object source code.

3 In the editor, selected the source file you want to work with and
completed the C++ portion of the user object function coding.

4 Used the Make utility to compile and link your user object into a DLL.

When the last step is successful, you’re ready to run and debug your
application.

Features of the Watcom debugger

Execution history

38

What follows is a brief overview of debugger features.

FOR INFO For detailed help using the debugger, select Help from the
debugger menu bar.

The debugger keeps an execution history as you debug your program. This
history is accessible using the Undo menu. The effect of program statements as
you single-step through your program are recorded. All interactions that allow
you to modify the state of your program (including modifying variable values
and changing memory and registers) are also recorded.

You can resume program execution at any previous point in the history. The
program history has no size restrictions aside from the amount of memory
available to the debugger, so theoretically you could single-step through your
entire program and then execute it in reverse.

Chapter 3 Compiling and Linking the C++ Class

Undo/Redo

Unwind/Rewind

Replaying the call
stack

There are several practical problems that get in the way of this. When you
single-step over a call or interrupt instruction, or let the program run normally,
the debugger has no way of knowing what kind of operations occurred. No
attempt is made to discover and record these operations, but the fact that you
stepped over a call is recorded. If you try to resume program execution from a
point before a side-effect, the debugger will give you the option to continue or
back out of the operation. Use caution if you choose to continue. If an
important operation is duplicated, your program could fail. Of course,
reversing execution over functions with no side-effects is harmless, and can be
auseful debugging technique. If you have accidentally stepped over a call that
does have an important side-effect, you can use Replay to restore your program
state.

Undo and Redo let you browse backward and forward through this execution
history. As you use these menu items, all recorded effects are undone or
redone, and each of the debugger's windows is updated accordingly.

Unwind and Rewind move the debugger's state up and down the call stack.
Like Undo, all windows are updated as you browse up and down the stack, and
you can resume execution from a point up the call stack. A warning is issued if
you try resuming from a point up the call stack, since the debugger cannot
completely undo the effects of the call. Unwind is particularly useful when
your program crashes in a routine that does not contain debugging information.

Caution

If you modify the machine state in any way when you are browsing
backward through the execution history, all forward information from that
point is discarded. If you have browsed backward over a side-effect, the
debugger will give you the option of canceling any such operation.

The debugger also keeps a history of all interactions that affect the execution
of your program, such as setting breakpoints and tracing. Replay allows you to
restart the application and run it back to a previous point. This is particularly

useful when you accidentally trace over a call. This replay information may be
saved to a file in order to resume a debugging session at a later date.

You can navigate up and down the program’s call stack to see where the
currently executing routine was called from. As you do this, all other windows
in the debugger update automatically. Local variables in the calling routines
will be displayed along with their correct values.

39

The Watcom debugger

Setting breakpoints

There are special cases where replay will not perform as expected. Since replay
is essentially the same as playing your keystrokes and mouse interactions back
to the debugger, your program must behave identically on a subsequent run.
Any keyboard or mouse interaction that your program expects must be entered
the same way. If your program expects an input file, you must run it on the
same data set. Your program should not behave randomly or handle
asynchronous events. Finally, your program should not be multithreaded. If
you have been tracing just one thread, your program will replay correctly, but
multiple threads may not be scheduled the same way on a subsequent run.

The debugger allows you to set breakpoints when specific code is executed or
data is modified. These breakpoints may be conditional, based on an
expression or a countdown. Simple breakpoints are created with a keystroke or
single mouse click. More complex breakpoints are entered using a dialog box.
The debugger contains small buttons that appear on the left side of some
windows. These buttons are shortcuts for the most common operations, such as
setting and clearing a breakpoint by clicking the button to the left of a source
line.

Debugger menu items

40

Context-sensitive menus are present in each debugger window. To use them,
you select an item from the screen using the right mouse button. A menu
containing a list of actions appropriate for that item is displayed. You can use
this capability to perform actions such as displaying the value of an expression
which you have selected from the source window. Here is a list of some of the
most commonly used menu items.

Inspect Inspect displays the selected item. The debugger determines how
to best display the item based on its type. If you inspect a variable or an
expression, the debugger opens a new window showing its value. If you
inspect a function, the debugger positions the source code window at the
function definition. If you inspect a hexadecimal address from the assembly
window, a window showing memory at that address is opened, and so on.
Experimenting with Inspect will help you learn to use the debugger
effectively.

Modify Modify lets you change the selected item. You will normally be
prompted for a new value. For example, select the name of a variable from
any window and choose Modify to change its value.

New New adds another item to a list of items displayed in a window. For
example, choosing New in the Break Point window lets you create a new
breakpoint.

Chapter 3 Compiling and Linking the C++ Class

Debugging

Delete Delete removes the selected item from the window. For example,
you can use Delete to remove a variable from the Watches window.

Source Source displays the source code associated with the selected item.
The debugger will reposition the source code window at the appropriate
line. Selecting a module name and choosing Source will display the
module's source code.

Assembly Assembly positions the assembly code window at the code
associated with the selected item.

Functions Functions shows a list of all functions associated with the
selected item or window. For example, choose Functions in the source
window to see a list of all functions defined in that module.

Watch Watch adds the selected variable or expression to the Watches
window. This allows you to watch its value change as the program runs.
Note that this is not a watchpoint. Execution will not stop when the variable
changes.

Break Break sets a breakpoint based on the selected item. If a variable is
selected, the program will stop when the variable is modified. If a function
is selected, the program will stop when the function executes.

Globals Globals shows a list of global variables associated with the
selected item.Show presents a cascaded menu that lets you show things
related to the selected item. For example, you can use Line from the Show
menu in the source code window to see the line number of the selected line.

Type Type presents a cascaded menu that allows you to change the display
type of the window or selected item.

These are the basic steps to follow when debugging a DLL created for
PowerBuilder.

To debug a DLL created for PowerBuilder:

1 From the IDE project window, select the source file you want to debug.
2 Invoke the debugger.

3 Set any breakpoints or loop specifications you need to control the DLL
when this source module is executed.

4 Select Run>Go from the debugger menu bar.

1

The Watcom debugger

5 Switch to PowerBuilder and run your application.

As soon as a breakpoint is reached within your DLL, the code will be
executed under control of the debugger, allowing you to step through
your program, trace program execution, and manipulate variables and
the program stack.

FOR INFO For detailed instructions on using breakpoints and traces and
inspecting and modifying memory with the debugger, see the debugger
online Help.

Debugging DLLs

The debugger automatically detects all DLLs that your application references,
as they are loaded. If you created your DLL to include debugging information,
you can debug it just as if it were part of your application. Even if it does not
have debugging information, the debugger will process system information to
make the DLL entry point names visible. There are a few limitations:

¢ You cannot debug your DLL initialization code. This is the first routine
that the operating system runs when it loads the DLL. This is not
normally a problem, since most DLLs do not do much in the way of
initialization.

¢ PowerBuilder DLLs are always loaded dynamically. Because of this,
the debugging information may not be available immediately. Try
tracing a few instructions and it will appear.

¢ If you restart an application, you will lose any breakpoints that you had
set in dynamically loaded DLLs. You need to trace back over the call
to the DLL entry point and reset these breakpoints.

Let's assume you want to debug your application in order to locate an error in
programming. In the previous section, the Hello World program was compiled
with default compile and link options. When debugging an application, it is
useful to refer to the symbolic names of routines and variables. It is also
convenient to debug at the source line level rather than the machine language
level. To do this, you must direct both the compiler and linker to include
additional debugging information in the object and executable files.

Setting debug switches

Using the Options menu from the IDE menu bar, you control the amount of
debugging information that is built into your executable code.

42

Chapter 3 Compiling and Linking the C++ Class

This example

These steps compile and link the Hello World program with full debugging
information.

To compile and link your program with full debugging information:
1 Select Options>C++ Compiler Switches from the menu bar.

" WATCOM IDE [e:\pb60\hellothello wpi]
=] I

* hello.dll

2 Select Compile Switch group 6: Debugging Switches.

f -+ Compiler Switches

Debugging Switches

1. File Option Switches

‘|2. Diagnostics Switches

“13. Source Switches

‘|4, Miscellaneous Switches
Optimization Switches
Debugging Switches
CodeGen Strategy Switches

Memory Model and Processor Switches
itches

3 Set the Debugging Style to Full debugging info [d2].

43

The Watcom debugger

44

CHAPTER 4 Sample Program: Forecast

About this chapter This chapter describes an additional example, called Forecast, which is
more complex than the Hello World sample used in Chapter 2, "Creating
the C++ Source Code".

Contents Topic Page
About the Forecast application 46
Forecast application class hierarchy 47
Cobase source code 49
cobase.cpp 49
cobase.hpp 56
ccobase.cpp 59
How to run the Forecast program 62

45

About the Forecast application

About the Forecast application

46

Forecast makes use of a hierarchy of C++ classes. The application forecasts the
next value in a series, based on the numbers that have come before. The
algorithm used can be as simple as assuming the next number will be the same
as the last. It may be as complex as calculating the average growth over several
previous samples to arrive at a forecast value.

This program is a good example of creating and using C++ classes with
PowerBuilder. There are six different forecasting algorithms, each one
implemented in its own user object. The same algorithms are also performed
by external functions in a DLL.

The application menu and toolbars let the user choose which algorithm to use
and whether to perform its calculations using the PowerScript user object
functions, the compiled DLL equivalents, or both. For comparison, the two sets
of results appear side by side, in two DataWindows. Below each is a
benchmark displaying the time taken to compute the series of forecasts. This
highlights the performance benefit of using C++ classes over user object
functions written in PowerScript.

If you want to experiment with this example, it's best to start PowerBuilder and
load the Forecast application. The two libraries dllsampl.pbl and dlltools.pbl
contain all the PowerBuilder objects and code you need to run the application.
This includes a hierarchy of C++ user objects, each one encapsulating a
different forecasting algorithm and statistics about its performance. The file
forecast.dll contains the C++ equivalent of these user objects, with a separate
class for each forecast type.

You are expected to have a reasonable understanding of PowerBuilder
application development, so we are not going to provide a lengthy explanation
of these libraries. Armed with your experience plus information in the
following topics, you should be able to make significant changes to it.

Chapter 4 Sample Program: Forecast

Forecast application class hierarchy

The basic object class in this program is the forecast, and it is coded as a class
user object called uobase (user object base). It forms the base class in a
hierarchy of classes that inherit common properties from it. The user objects in
this hierarchy are:

User object | Inherited

name from Description

statistics — Provides statistical services to all forecast
classes; defined within the definition of uobase

uobase — Sets the forecast for the next period to the actual
value of the previous period

uoincrement uobase Calculates the forecast for the next period by
adding a fixed increment to the actual value for
the previous period

uogrowth uobase Calculates the forecast for the next period by
adding a fixed percentage of the previous
period's actual value

uoaverage uobase Calculates the forecast for the next period by
averaging the actual value for a number of
previous periods

uovincrement | uoincrement | Calculates the forecast for the next period by
adding the average increment over a number of
previous periods

uovgrowth uogrowth Calculates the forecast for the next period as a
factor of the average growth over the previous
several periods

These classes are implemented as PowerBuilder user objects, in the tutorial file
dlltools.pbl. This library also contains the application's DataWindows, global
functions, and a structure to hold statistical information. The application
object, along with all windows and menus, are found in dllsampl.pbl in the
same directory.

The C++ class equivalent of uobase is cobase (C++ object base). Its function
declarations are shown below. You can enter these declarations and compile

the DLL yourself, or use the compiled version included with this package.
Function name | Return type

. double

| Parm name | Parm type

| I
i which_one ' integer

Arithmetic_ mean

47

Forecast application class hierarchy

48

Function name Return type Parm name Parm type
Initialize n/a given_actual double
Maximum double which_one integer
Minimum double which_one integer
Next_ Actual n/a given_actual double
Period_ Forecast double n/a n/a
Prediction double n/a n/a
Range double which_one integer
Standard_deviation double which_one integer
Title string n/a n/a
Variance double n/a n/a

Chapter 4 Sample Program: Forecast

Cobase source code

cobase.cpp

PowerBuilder generates three C++ skeleton files for the class cobase:
cobase.cpp, cobase.hpp, and ccobase.cpp. Remember that ccobase.cpp is never
to be altered, because it consists of interface functions that sit between
PowerBuilder and the C++ code you write in cobase.cpp.

The statistical functions shown at the beginning of this listing are members of
the statistics class, defined in file cobase.hpp. This class is not derived from a
PowerBuilder user object, but is instead defined within the C++ domain and
therefore cannot be accessed from PowerBuilder. One class, zero_based_var,
is inherited from statistics. The statistical methods in these classes are used by
the forecasting algorithms in cobase and its descendent classes to track their
success.

The header files string.h and maths.h are added to include the definitions for
string functions such as strcpy, and math functions used in some of the derived
algorithm classes. Notice also that you can add code to the cobase constructor
function, just as you can to the constructor event of a PowerBuilder user object.
This is a handy way to initialize data members, or execute function code that
must be performed whenever a new instance of the class is created.

The last three functions in this file, initialize_statistics, update_statistics, and
compute_forecast, are examples of internal functions. They are not prototyped
in the PowerBuilder user object cobase and cannot be called from the Forecast
application. They are called from within this DLL only.

/* Watcom Interface Generator Version 1.0 */
/* This file contains code generated by PowerBuilder.
* Do not modify code delimited by comments of the

form:

* // PB -- begin generated code for object <>.
// Do not modify this code

* // PB -- end generated code for object <>.

* This file contains the bodies of the functions for
your user object.

*/

#include <string.h>

#include <math.hs>

#include <pbdll.h>

#include "cobase.hpp"

49

Cobase source code

50

/] = - - - - - - - - - - - - - - - - -
// statistics class
/] = - = = = - = - - - - - - - - - - =

void statistics::next_value (double given_value)
{
this->value_count ++;
this->sum_of_values += given_value;
this->sum_of_squares += pow (given_value, 2);
if (given_value < this->minimum_value)
this->minimum_value = given_value;
if (given_value > this->maximum_value)
this->maximum_value = given_value;

void statistics::initialize()

{
this->value_count = 0;
this->sum_of_values = 0;
this->sum_of_squares = 0;
this->minimum_value = 100000000;
this->maximum_value = -100000000;
}

double statistics::range()
{

return (this-smaximum_value - this->minimum_value) ;

double statistics::arithmetic_mean()

{
return (this->sum_of_values / this->value_count) ;
b
double statistics::standard_deviation()
{
return (sqgrt (this->standard_variance ()));
}

double statistics::standard_variance()
{
double Stdvar;
if (this->value_count == 1)
Stdvar = 0;

Chapter 4 Sample Program: Forecast

else
Stdvar = ((this->sum_of_squares * \
this->value_count) - \

pow (this->sum_of_values, 2))/ \
(this->value_count * (this->value_count - 1));
return (Stdvar);

double statistics::maximum{()
{

return (this-s>maximum_value) ;

double statistics::minimum()

{
return (this->minimum_value) ;
b
/] = = - = = === === = = = = - = -
// zero_based_var class
[/ = = = = = = - = = - - - - - - - - -

double zero_based_var::standard_variance ()
{
double Stdvar;
if (this->value_count == 1)
Stdvar = this->sum_of_squares;
else
Stdvar = this->sum_of_squares / (this- \
value_count - 1);
return (Stdvar);

}

/)= - - - s s s s s - = = = = = = -

// cobase class

/] - - - - - - = s - - = = — = = - = -

// PB -- begin generated code for object <cobases>.
// Do not modify this code

#if 1

void cobase: :next_actual (double given_actual) {

// PBSS -- end generated code for object <cobases.
//===========z=======================

51

Cobase source code

52

this->last_actual = given_actual;
this->last_forecast = this->next_forecast;
this->last_variance = this->next_forecast - \
given_actual;
this->update_statistics ();
this->compute_forecast ();
}

#endif // PowerBuilder code, do not remove

// PBS -- begin generated code for object <cobasex>.

// Do not modify this code

#if 1

void cobase::initialize (double given_actual) {

// SPBS -- end generated code for object <cobases>.

//==================================
this->last_actual = given_actual;

this->last_forecast = given_actual;
0;
this->initialize_statistics ();

this->last_variance

this->update_statistics ();
this->compute_forecast ();

}

#endif // PowerBuilder code, do not remove

// PB -- begin generated code for object <cobasex>.

// Do not modify this code

#if 1

double cobase: :period_forecast() {

// PBS -- end generated code for object <cobases.

return(this->last_forecast) ;
}
#endif // PowerBuilder code, do not remove
// PB -- begin generated code for object <cobases>.
// Do not modify this code
#if 1
double cobase::variance () {
// PB -- end generated code for object <cobase>.

return(this->last_variance) ;
}
#endif // PowerBuilder code, do not remove
// PB -- begin generated code for object <cobase>.
// Do not modify this code

Chapter 4 Sample Program: Forecast

#if 1

double cobase: :prediction() {

// $PBS -- end generated code for object <cobase>.

//==================================
return({(this->next_forecast);

}

#endif // PowerBuilder code, do not remove

// PBS -- begin generated code for object <cobases.

// Do not modify this code

#if 1

double cobase::arithmetic_mean (int which_one) {

// PB -- end generated code for object <cobase>.

//=========s===s=============z=======

double Mean;
switch (which_one)

{
case 1:
Mean = this-s>actual_stats.arithmetic_mean ();
break;
case 2:
Mean = this->forecast_stats.arithmetic_mean () ;
break;
case 3:
Mean = this->variance_stats.arithmetic_mean ();
break;
}
return (Mean) ;
}
#endif // PowerBuilder code, do not remove
// PB -- begin generated code for object <cobases.
// Do not modify this code
#if 1
double cobase::standard_deviation(int which_one) {
// PBS -- end generated code for object <cobase>.
//=============s=====================

double StdDev;
switch (which_one)
{
case 1:
StdDev=this->actual_stats.standard_deviation\ () ;
break;

53

Cobase source code

54

case 2:

StdDev=this->forecast_stats.standard_deviation\ () ;

break;
case 3:

StdDev=this>variance_stats.standard_deviation() ;
break;

}

return (StdDev) ;

}

#endif // PowerBuilder code, do not remove

// PB -- begin generated code for object <cobases.

// Do not modify this code

#if 1

double cobase::range(int which_one) {

// PB -- end generated code for object <cobases.

//==================================

double Range;
switch (which_one)
{

case 1:

Range this->actual_stats.range();

i}

break;

case 2:
Range = this->forecast_stats.range();
break;

case 3:

|

Range = this->variance_stats.range();
break;

}

return (Range) ;

}

#endif // PowerBuilder code, do not remove

// $PBS -- begin generated code for object <cobasex.
// Do not modify this code

#if 1

char * cobase::title() {

// PBS -- end generated code for object <cobasex>.
//===========s======================
return(this->title_tag);

}

#endif // PowerBuilder code, do not remove

// $PBS -- begin generated code for object <cobasex>.

// Do not modify this code

Chapter 4 Sample Program: Forecast

#if 1

double cobase::maximum(int which_one) {

// $PBS -- end generated code for object <cobases.
//==sscccsccssss=====s==============

double Maximum;
switch (which_one)
I

case 1:
Maximum = this->actual_stats.maximum/() ;
break;

case 2:
Maximum = this->forecast_stats.maximum() ;
break;

case 3:
Maximum = this->variance_stats.maximum() ;

break;
}
return (Maximum) ;
}
#endif // PowerBuilder code, do not remove
// $PBS -- begin generated code for object <cobases>.
// Do not modify this code
#if 1
double cobase: :minimum(int which_one) {
// PB -- end generated code for object <cobase>.
//==================s===============

double Minimum;
switch (which_one)
{
case 1:
Minimum = this->actual_stats.minimum() ;
break;

case 2:
Minimum = this->forecast_stats.minimum() ;
break;

|

case 3:
Minimum
break;

this->variance_stats.minimum() ;

1]

}

return (Minimum) ;

}

#endif // PowerBuilder code, do not remove

55

Cobase source code

cobase.hpp

56

cobase: :cobase ()
actual_stats (), forecast_stats(),
variance_stats ()
{
strcpy (this->title_tag, "Constant Performance");

}

cobase::cobase (char const * title)
actual_stats (), forecast_stats(),

variance_stats ()

{

strcpy (this->title_tag, title);

}

void cobase::initialize_statistics ()

{
this->actual_stats.initialize ();
this->forecast_stats.initialize ();
this->variance_stats.initialize ();
}

void cobase: :update_statistics ()

{
this->actual_stats.next_value (this->last_actual);
this->forecast_stats.next_value (this->
\last_forecast) ;
this->variance_stats.next_value (this->
\last_variance) ;

void cobase: :compute_forecast ()
{

this->next_forecast = this->last_actual;

This is the header file that defines the classes cobase, statistics, and
zero_based_var. Only cobase has a corresponding PowerBuilder user object;
statistics and its descendant zero_based_var are not known to PowerBuilder
and are used only in the C++ domain.

Chapter 4 Sample Program: Forecast

The initialize_statistics, update_statistics, and compute_forecast functions of
class cobase have been manually prototyped here. These functions do not exist
in the C++ user object cobase, because there is no need to call them from
PowerBuilder. They are known as nonexported, or internal functions, and are
called from within this DLL only.

/* Watcom Interface Generator Version 1.0 */
/* This file contains code generated by PowerBuilder.
* Do not modify code delimited by comments of the

form:

* // PBSS -- begin generated code for object <>. Do
not modify this code

* // SPBS -- end generated code for object <>.

* This file contains the the C++ class definition for
your user object.

*/

#include <string.hpp>

#include <windows.h>

#ifndef _COBASE_DEFN_

class statistics {
public:
virtual void next_value(double given_value);
virtual void initialize();
virtual double arithmetic_mean() ;
virtual double standard_deviation();
virtual double range();
virtual double maximum() ;
virtual double minimum() ;
protected:
virtual double standard_variance() ;
protected:
intvalue_count;
doublesum_of_values;
doublesum_of_squares;
doubleminimum_value;
doublemaximum_value;

57

Cobase source code

58

class zero_

protected:
virtual

b

// $PBS --

based_var : public statistics {

double standard_variance();

begin generated code for object <cobases.

// Do not modify this code

class cobase {

public:
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
// PB --
//=========
/*
* PUT YOUR
*/
protected:

double minimum(int which_one) ;

double maximum(int which_one) ;

char * title();

double range(int which_one) ;

double standard_deviation (int which_one) ;
double arithmetic_mean(int which_one) ;
double prediction() ;

double variance() ;

double period_forecast();

void initialize(double given_actual) ;
void next_actual (double given_actual);
end generated code for object <cobases>.

DECLARATIONS HERE

doublenext_forecast;

doublelast_variance;
doublelast_forecast;
doublelast_actual;
chartitle_tagl[30];
statisticsactual_stats;
statisticsforecast_stats;
zero_based_varvariance_stats;

protected:
virtual
virtual
virtual

public:
cobase

void initialize_statistics ();
void update_statistics () ;
void compute_forecast ();

()

cobase (char const * title);

b

#define _COBASE_DEFN_

#endif

Chapter 4 Sample Program: Forecast

ccobase.cpp

/* Watcom Interface Generator Version 1.0 */
/* This file is generated by PowerBuilder.
* Do not modify this file.
* This file contains interface code called by
PowerBuilder.
*/
#include <pbdll.h>
#include "cobase.hpp"
extern "C" {
double PB_EXPORT cobaseminimum(cobase *this_hdl, \
int which_one);
double PB_EXPORT cobasemaximum(cobase *this_hdl, \
int which_one) ;
char * PB_EXPORT cobasetitle(cobase *this_hdl) ;
double PB_EXPORT cobaserange (cobase *this_hdl, \
int which_one) ;
double PB_EXPORT cobasestandard_deviation(cobase \
*this_hdl, int which_one) ;
double PB_EXPORT cobasearithmetic_mean (cobase \
*this_hdl, int which_one);
double PB_EXPORT cobaseprediction(cobase *this_hdl) ;
double PB_EXPORT cobasevariance(cobase *this_hdl) ;
double PB_EXPORT cobaseperiod_forecast (cobase \
*this_hdl) ;
void PB_EXPORT cobaseinitialize(cobase *this_hdl, \
double given_actual) ;
void PB_EXPORT cobasenext_actual (cobase *this_hdl, \
double given_actual);
cobase *PB_EXPORT cobase_CPP_CONSTRUCTOR() ;
void PB_EXPORT cobase_CPP_DESTRUCTOR (cobase \
*this_hdl) ;
}
double PB_EXPORT cobaseminimum(cobase *this_hdl, int
which_one) |

return (this_hdl->minimum(which_one)) ;
}
double PB_EXPORT cobasemaximum(cobase *this_hdl, int
which_one) {

return (this_hdl->maximum(which_one)) ;

59

Cobase source code

char * PB_EXPORT cobasetitle(cobase *this_hdl) {
return (this_hdl->title());

double PB_EXPORT cobaserange (cobase *this_hdl, int
which_one) {
return (this_hdl->range (which_one)) ;

double PB_EXPORT cobasestandard_deviation (cobase

*this_hdl, int which_one) {
return((this_hdl->standard_deviation \
which_one)) ;

double PB_EXPORT cobasearithmetic_mean (cobase
*this_hdl, int which_one) {
return (this_hdl->arithmetic_mean (which_one)) ;

double PB_EXPORT cobaseprediction (cobase *this_hdl) {
return(this_hdl-sprediction());

double PB_EXPORT cobasevariance (cobase *this_hdl) {
return (this_hdl->variance());

double PB_EXPORT cobaseperiod_forecast (cobase
*this_hdl) {
return (this_hdl->period_forecast()) ;

void PB_EXPORT cobaseinitialize (cobase *this_hdl,
double given_actual) {
this_hdl->initialize(given_actual) ;

void PB_EXPORT cobasenext_actual (cobase *this_hdl,
double given_actual) |
this_hdl->next_actual (given_actual) ;

60

Chapter 4 Sample Program: Forecast

cobase *PB_EXPORT cobase_CPP_CONSTRUCTOR () {
return (new cobase) ;

void PB_EXPORT cobase_CPP_DESTRUCTOR (cobase
*this_hdl) {
delete this_hdl;

61

How to run the Forecast program

How to run the Forecast program

62

o
*

The two application PBLs, dllsampl.pbl and dlltools.pbl, are not compiled.
This makes it easier for you to play with the application and extend its function.
The DLL dllsaml.dll is compiled and resides in the same directory as the
PowerBuilder libraries. To use it, make sure that directory is in your path.

The names of the toolbar button images referenced by dllsampl.pbl are not
fully qualified. While this gives you more flexibility in locating the program
libraries where you want them, you must make sure the button images are in
your current directory or they won't display.

One more thing: you will notice certain menu items and toolbar buttons are
inactive. This should give you some clues about where this application could
be enhanced and extended. Feel free to implement the disabled functions as
you see fit.

To run the Forecast application:
1 Start PowerBuilder and the Forecast application.

2 Click the blue P-Series button to create a series of random numbers that
will serve as actual values on which to base the forecasts.

You are prompted for the min and max values of the series, as well as
the number of values within the range. This series is used by the
PowerBuilder user object function version of the calculations.

3 To open an equivalent window with the same set of numbers as any of
the other forecasting algorithms, click the C-Series button.

4 To begin the forecasting operation, click any of the other forecasting
algorithms.

The forecast value for the present period is calculated according to the
algorithm selected. For example, if you choose the Constant button, the
forecast value for each point is set to the actual value of the previous
point. The difference between each point's actual and forecast values
appears in the variance column, with negative variances shown in red.

Notice the timings displayed below the series windows. They show the
actual calculation time, exclusive of screen updates, and are a good
indicator of the speed advantage of using compiled C++ class objects.

5 Click the Graph button to see the actual and forecast values plotted
graphically.

6 Click the Chart button to see a plot of the variance between the two.

Chapter 4 Sample Program: Forecast

Click the Statistics button to display a window that shows statistics
such as value ranges, average values, and standard deviations.

The application runs in an MDI frame, with a number of sheets—data
series, graph, statistics—open at any time. Clicking the Close button
closes whichever sheet is currently active.

Click the Exit button to quit the Forecast application.

63

How to run the Forecast program

64

APPENDIX A

About this appendix

Conversion Error Messages

This appendix lists error messages related to converting from
PowerBuilder to C++ source code.

The messages are listed alphabetically.

65

Error messages

Error messages

66

Attempt to delete 'filename' failed The system tried unsuccessfully to
delete a file. The file may be in use by Windows or another application, or
it may be protected, or read-only.

Attempt to open ‘filename' failed The system was unable to open a file
for read or write; check that it exists on the current path; if the file is a DLL,
it may already be loaded by this or another application.

Attempt to read from a file failed The file may be protected; if the file is
on a network device, it may have been busy. This message may also
indicate the contents of the C++ skeleton (cpp, hpp) files have been
changed between the comments marked \§PB$. Save a copy of each.cpp
file (except the cover function file whose name begins with C) and delete
them from the current directory. Follow the procedure for creating C++
skeletons from the PowerBuilder User Object painter, to rebuild them.

Attempt to rename 'filename1' to 'filename2' failed The filename may be
protected or read-only; it may be in use by another application; or the target
filename, filename2 may already exist on the current path.

Attempt to write to a file failed The file may be in use by Windows or
another application, or it may be protected, or read-only. If the file is a
DLL, it may be in use by Windows or another application.

Improper file format The system attempted to read a file and expected it
to be in a particular format. It was not. Compare the expected format to that
of the actual file. If necessary, the file may have to be rebuilt.

Out of memory The interface converter ran out of memory translating
your PowerBuilder user object into cpp and hpp files. If you have suffered a
Windows protection fault during the current session, you may have to
reboot to reset memory pointers. If this doesn't solve the problem, try to
maximize available memory: close any unused windows and shut down all
unnecessary applications.

In Windows 3.1 only

In Windows 3.1 only, try to maximize available memory: remove TSRs that
are not required; load DOS and other essential programs into high memory;
fine-tune your memory management program (emm386 and so on) if any;
or reduce the size of your user object.

Chapter

Parameter 'inparm' in function 'funcname' contains an array element
definition In C++, you cannot define an array by specifying the bounds—

that is, int months [1 TO 12]. Array indexes in C++ start at 0 and go to the
number of elements-1. Convert array definitions to the form int months [12].

Parameter 'inparm' in function 'funcname' is a multidimensional array
You can only pass one-dimensional arrays as a parameter to a function.

Parse error The interface generator program did not understand the syntax
of your PowerBuilder user object definition. Check your user object
definition and try again. If the error persists, call Powersoft Technical
Support.

Prototype for 'funcname' has changed The interface generator is trying
to update C++ source code for an existing user object and has found the
function definition in PowerBuilder no longer matches the prototype in
filename.hpp.

Scanner error The interface generator program did not understand the
syntax of your PowerBuilder user object definition. Check your user object
definition and try again. If the error persists, call Powersoft Technical
Support.

Unknown type 'datatype' in function/subroutine 'funcname' Either the
return type of a function or the type of a parameter declared in its parameter
list is not a valid data type.

Variable 'varname' contains an array element definition In C++, you
cannot define an array by specifying the bounds—that is, int months [1 TO
12]. Array indexes in C++ start at O and go to the number of elements-1.
Convert array definitions to the form int months [12].

Variable 'varname' has unknown type 'datatype’ Check the definition
for varname and make sure its data type is a valid PowerBuilder data type
and that it is spelled correctly.

Variable 'varname' is a dynamic array The interface generator cannot
create a C++ definition for a variable-length array. Make sure that all array
variables to be converted to C++ code refer to fixed-length arrays only.

Variable 'varname' is a multidimensional array Arrays may be one-
dimensional only.

67

Error messages

68

APPENDIX B

About this appendix

Contents

The C++ Source Code

This appendix presents the C++ source code created by the example in

Chapter 2, "Creating the C++ Source Code".

Topic Page
uo_gre6Y.cpp 70
cuo_gréy.cpp 72
pbdiLh 75
Imain.cpp 76
LibMain 77
WEP 79

69

uo_gre6Y.cpp

uo_gre6Y.cpp

70

This file is generated by PowerBuilder 6.0 when you save the C++ user object.
It is a skeleton C++ program, with each of your user object functions "stubbed
out." You will complete the program by filling in the code for these functions.

Caution

The C++ class definition (uo_gre6Y .hpp in our example) and skeleton file
(uo_gre6Y.cpp) must be modified carefully. Any changes made on or
between the two lines starting with //PB could corrupt these files and
cause the compiler to fail. If you return to PowerBuilder to make changes to
your user object and enter the IDE again, all code enclosed within the
//PB comments gets regenerated, destroying any changes you have made.

Any function code added to the C++ skeleton outside the /PB comments
will be maintained, even if the user object is changed in PowerBuilder and
resaved. This allows changes to your user object without losing the C++
code you’ve already written.

The C++ cover function file, cuo_gr6Y.cpp, should not be changed. It
contains interface code only, and no user-serviceable parts. It is regenerated
every time you save the PowerBuilder user object, so any changes you
make here will be destroyed. Changes made here can cause unpredictable
errors when you attempt to call the user object DLL from PowerBuilder.

Although more #INCLUDE lines can be added, you should not remove any
that PowerBuilder provides for you:

¢ The first of these brings in a header file, pbdll.h, that consists of a
single line definition for the macro PB_EXPORT. This is described
below.

¢ The second, uo_gre6Y.hpp, contains function prototypes and data
member definitions for your C++ user object that may be used by other
code modules.

In the code examples that follow, the '\' character at the end of a line indicates
the line of C++ code continues on the next line. You may enter this code as a
single line when working in the editor.

#include <pbdll.h>

#include "uo_gre6Y.hpp"

/* WATCOM Interface Generator Version 1.0 */

/* This file contains code generated by PowerBuilder.
* Do not modify code delimited by comments of the

Appendix B The C++ Source Code

form:

* // $SPBS -- begin generated code for object <>. Do
not modify this code.

* // $PBS -- end generated code for object <>.

* This file contains the bodies the functions for
* your user object.
*/

#include <pbdll.h>

#include <windows.h>

#include "uo_gre6Y.hpp"

// PBS -- begin generated code for object
// <uo_greeting>. Do not modify this code
// #if 1

void uo_greeting::cf_display_message() {
// PBS -- end generated code for object
// <uo_greetings>.
//===========z======z=z====z=z====z========

/*

* PUT YOUR CODE HERE

*/
}
#endif // PowerBuilder code, do not remove
// PB -- begin generated code for object

// <uo_greeting>. Do not modify this code
#if 1

void uo_greeting: :cf_save_message (char * \
input_message) {

// PB -- end generated code for object //
<uo_greeting>.
//================z==================

/*

* PUT YOUR CODE HERE

*/
}

#endif // PowerBuilder code, do not remove

71

cuo_gréy.cpp

cuo_gréy.cpp

This file is also created when you save a C++ user object and contains DLL
cover function definitions created from your user object. Sometimes called
wrapper functions, these routines stand between the calling function in a
PowerBuilder user object and the compiled DLL function that does the work.
In PowerBuilder’s case, this is necessary because of a phenomenon known as
name mangling.

The cover function file, cuo_gr6y.cpp, is listed below.

Do not change this code

None of this code is user-serviceable. It is intended strictly as an interface
between PowerBuilder and the DLL you create, and you should not change
it.

/* WATCOM Interface Generator Version 1.0 */
/* This file is generated by PowerBuilder.
* Do not modify this file.
* This file contains interface code called by
* PowerBuilder.
*/
#include <pbdll.h>
#include "uo_gre6Y.hpp"
extern "C" {
void PB_EXPORT uo_greetingcf_save_message(\
uo_greeting *this_hdl, char * input_message) ;
void PB_EXPORT uo_greetingcf_display_message (\
uo_greeting *this_hdl) ;
uo_greeting *PB_EXPORT \
uo_greeting_CPP_CONSTRUCTOR () ;
void PB_EXPORT uo_greeting CPP_DESTRUCTOR (\
uo_greeting *this_hdl) ;

void PB_EXPORT uo_greetingcf_save_message(\
uo_greeting *this_hdl, char * input_message) {
this_hdl->cf_save_message (input_message) ;

72

Appendix B The C++ Source Code

void PB_EXPORT uo_greetingcf_display_message (\
uo_greeting *this_hdl) {
this_hdl->cf_display_message () ;

uo_greeting *PB_EXPORT uo_greeting_CPP_CONSTRUCTOR ()
{

return (new uo_greeting)

’

void PB_EXPORT uo_greeting_ CPP_DESTRUCTOR (\
uo_greeting *this_hdl) {
delete this_hdl;

73

uo_gre6Y.hpp

uo_gre6Y.hpp

74

/* WATCOM Interface Generator Version 1.0 */

/* This file contains code generated by PowerBuilder.
* Do not modify code delimited by comments of the

* form:

* // SPBS$ -- begin generated code for object <>.
* Do not modify this code.
* // SPBS -- end generated code for object <>.

* This file contains the the C++ class definition
* for your user object.
*/

#include <string.hpp>
#include <windows.h>

// PB -- begin generated code for object
//<uo_greeting>. Do not modify this code.
class uo_greeting {

public:
virtual void cf_save_message(char * \
input_message ;
virtual void cf_display_message() ;

private:

String stored_message;
// $PBS -- end generated code for object
// <uo_greetings.

/*
* PUT YOUR DECLARATIONS HERE
*/

Y

Appendix B The C++ Source Code

pbdil.h

This header file consists of a single line definition for the macro PB_EXPORT:

#define PB_EXPORT __pascal ___export

This macro definition is brought into the compiled skeleton file by the line:
#INCLUDE <pbdll.h>

Do not remove this line. In this line, __pascal tells the compiler to use the
pascal calling convention, and the __export keyword in a function declaration
means that it is to be an exported DLL function. It is vital that both of these
keywords appear in the declaration of each exported function in your code.
Otherwise, these DLL functions will not be available from within your
PowerBuilder application.

75

Imain.cpp

Imain.cpp

76

LibMain and WEP are two required functions included in every Windows 3.1
and Windows 95 DLL. Windows NT requires only DLL.Main. LibMain is
called to perform initialization when the DLL is loaded, and WEP does cleanup
just before it unloads.

If you are an experienced Windows DLL programmer (in either C or C++), you
probably have your own favorite Main and WEP routines. You will no doubt
have noticed PowerBuilder supplies these for you, called LibMain and WEP,
in the source file Imain.cpp. This file is compiled and linked with your other
source files to produce the DLL.

Appendix B The C++ Source Code

L

bMain

/* This file is generated by PowerBuilder.

* You may modify it in any way you wish but do not
* remove Libmain and WEP. Without them you will be
* unable to link yur DLL.

* / N

#include <windows.h>
#include "pbdll.h"

#ifdef _NT_
extern "C" {

int _stdcall DLLMain (DWORD, DWORD reason, DWORD)
{
if (reason == DLL_PROCESS_ATTACH) {
extern char _WD_Present;
if (_WD_Present { // This is a hook for the
Watcom debugger.
extern void Int3WithSignature (char _far *);
#pragma aux Int3WithSignature parm
caller[] = \
"int 3"\
"jmp short L1" \
‘W’ 'V’ ‘I’ 'D’" 'E’ 'O" \
"Ll:"
Int3wWithSignature ("DLL Loaded");

¥
return(l);

#else

int PB_EXPORT LibMain (HANDLE, WORD, WORD, LPSTR)
{

return(l) ;

77

LibMain

78

int PB_EXPORT WEP(int)
{
return(l);

}

#endif // PowerBuilder code, do not remove

LibMain

These assignments generate no code, but they prevent compiler warnings
about unreferenced variables.

Appendix B The C++ Source Code

WEP

int PB_EXPORT WEP(int res) {
res = res
return(l);

}

79

WEP

80

	02841491 ==================.tif
	02841492.tif
	02841493.tif
	02841494.tif
	02841495.tif
	02841496.tif
	02841497.tif
	02841498.tif
	02841499.tif
	02841500.tif
	02841501.tif
	02841502.tif
	02841503.tif
	02841504.tif
	02841505.tif
	02841506.tif
	02841507.tif
	02841508.tif
	02841509.tif
	02841510.tif
	02841511.tif
	02841512.tif
	02841513.tif
	02841514.tif
	02841515.tif
	02841516.tif
	02841517.tif
	02841518.tif
	02841519.tif
	02841520.tif
	02841521.tif
	02841522.tif
	02841523.tif
	02841524.tif
	02841525.tif
	02841526.tif
	02841527.tif
	02841528.tif
	02841529.tif
	02841530.tif
	02841531.tif
	02841532.tif
	02841533.tif
	02841534.tif
	02841535.tif
	02841536.tif
	02841537.tif
	02841538.tif
	02841539.tif
	02841540.tif
	02841541.tif
	02841542.tif
	02841543.tif
	02841544.tif
	02841545.tif
	02841546.tif
	02841547.tif
	02841548.tif
	02841549.tif
	02841550.tif
	02841551.tif
	02841552.tif
	02841553.tif
	02841554.tif
	02841555.tif
	02841556.tif
	02841557.tif
	02841558.tif
	02841559.tif
	02841560.tif
	02841561.tif
	02841562.tif
	02841563.tif
	02841564.tif
	02841565.tif
	02841566.tif
	02841567.tif
	02841568.tif
	02841569.tif
	02841570.tif
	02841571.tif
	02841572.tif
	02841573.tif
	02841574.tif
	02841575.tif
	02841576.tif

